First ‘Logue in the Water

Mental Models – The Great Misleader

I was riding my bicycle one day awhile back when a pickup truck came past, whereupon the driver stuck his arm out the window and yelled something at me that I heard as a ewe-see-kay sound. I was about to raise my own arm in a one-finger salute when I saw that his hand was in a fist, not such a salute, and it sunk in what he had actually said. I realized I was wearing my University of Wisconsin cycling jersey, and the driver had yelled, “Go Bucky!” As in Bucky Badger, the mascot of the Wisconsin Badgers. I had nearly fallen prey to my mental model.

A mental model is an explanation of someone’s thought process about how something works in the real world. It’s a representation of the surrounding world, the relationships between its various parts, and a person’s understandings and perceptions about all that, a device our brains use to create a “shortcut” to interpreting input from our environment. This being Texas, as any experienced road cyclist will tell you, when someone yells a ewe-see-kay sound at you, it’s almost invariably a crude and unfriendly invitation to get off the road. Thus, we cyclists have that mental model of those drivers.

As I learned from the incident on my bike, if your mental models are followed in knee-jerk fashion, they can lead you to very wrong conclusions. A lot of what we’ll be doing in this blog is challenging mental models about water resources management. Mental models that, it will be argued, lead even very seasoned professionals in the field to wrong conclusions. Indeed, perhaps especially seasoned professionals, simply because they presume their model is undeniably correct, and so refuse to test it.

Deep Conservation, the Surest Path to Sustainable Water

Another concept we’ll consider is “deep conservation”. The stock in trade of water conservation programs practiced by cities and other water supply entities only tinkers around the margins of the basic water management infrastructure system; they do not attempt to fundamentally alter that system. These programs mainly consist of urging the use of more water efficient fixtures and less water use for irrigation. Savings from these sources are largely dependent on behavior, so consistent delivery of a “firm yield” of conserved water supply would require a vigorous outreach, surveillance and enforcement effort, a “meddling” in activities being carried out on private property which most water supply entities have so far not evidenced the will to do. So this sort of conservation is rather “shallow”.

But what we need, if we are to approach sustainable water, are dependable, enduring long-term savings that are inherent in our water management processes. To get there, we need to get more deeply into how we manage water, and to fundamentally reform those processes.

The prevailing water resources infrastructure model is largely informed by the conditions considered to be paramount in the 19th century; in particular, these practices are largely focused on making what are perceived to be nuisances to go “away”. But today we need systems rooted in the realities of the 21st century, systems that address all water as a RESOURCE.

This is indeed an emerging awareness within the mainstream water engineering community, as set forth, for example, in the preface to Cities of the Future, written by Paul Brown of Camp, Dresser, McKee – a voice from the very heart of the mainstream. Brown calls presently prevailing practice the “fourth paradigm” of water resources management. We won’t go through the whole history lesson here, rather will just note that Brown’s “third paradigm” began in the mid-19th century, when the industrial revolution caused explosive growth of cities, creating squalor that resulted in rampant water-borne disease. The solution adopted was to pipe the stuff “away”.

Later, it was realized that, at “away”, our rivers and streams were being transformed into foul open sewers, and so treatment at the end of the pipe was incorporated, creating the “fourth paradigm” of management. Brown noted the fundamental inefficiency of this exclusive use of end-of-pipe control, stating, “… no matter how much money is spent to reduce controllable regulated sources of pollution, the integrity of water bodies has been severely impaired and will remain so if the fast conveyance, end of pipe treatment paradigm alone continues to be the prevailing model.” In terms of water quantity, this model pipes in water and pipes out “wastes”, both wastewater and stormwater runoff – which are resources if managed properly – creating long water loops.

Brown then introduced the concept of sustainable development and postulated that, in terms of water management, moving toward sustainable development will require that we “tighten up” these water loops. He states, “[In the future] all components of water supply, stormwater, and wastewater will be managed in a closed loop. … Closing the water loop may require decentralization of some components of the urban water cycle in contrast to the current highly centralized regional systems employing long distance water and wastewater transfer.” [emphasis added] Brown terms this new, tighter-looped infrastructure model the “fifth paradigm” of water resources management, and he asserts this is where society needs to be headed.  As do I.

Ways we can move to this “fifth paradigm” and benefits that will accrue include:

  • Hook up supplies more directly with demands, through strategies like building-scale rainwater harvesting and project-scale “waste” water reclamation and reuse, to create short water loops.  New developments – both infill and out in the hinterlands – could use those project-scale “waste” water systems to cost efficiently maximize reuse of this water resource in or near the development.  Do this instead of spending huge sums on pipelines to make the loops larger, to make resources that are being perceived as nuisances go “away”, so that the only way to accomplish reuse is spending even more on reclaimed water pipelines to get that resource back from “away” to serve those demands in or near where the flow was generated to start with.
  • Design water management strategies that focus on efficient utilization of water into the very fabric of every development – green infrastructure, rainwater harvesting, project-scale “waste” water reuse, etc. – instead of appending on, as if an afterthought, management strategies that focus most of the investment on just moving water to and away from the development.  If we do this, we may never have to build another trunk main, saving untold amounts of public money.
  • For example, there is no reason why every commercial building shouldn’t be required to derive all their non-potable water needs from project-scale rainwater harvesting and “waste” water reuse, as for example is absolutely required by the Living Building Challenge.
  • Manage stormwater to hold at least as much water on the land as remained there under natural conditions, by using Low-Impact Development (LID) strategies that focus on retention and infiltration, rather than running it to an end-of-pipe pond, and thence to “away”.  We need to stop, and reverse, the “desertification” of the city.
  • Many of these actions will also significantly lower the amount of energy required to run the water management infrastructure, producing significant fiscal savings. This will also provide significant reductions in greenhouse gas emissions.  And, since it takes a lot of water to produce energy – the “water-energy nexus” – these energy savings will also save a lot of that water.

Adoption of this “fifth paradigm”, decentralized infrastructure model of shorter water loops will blunt or eliminate the water use inefficiencies that are inherent in the long-looped prevailing “fourth paradigm” model. If we stop addressing so much of the water that flows through our communities as a nuisance, to be made to go to that magical place we call “away”, and start addressing it as a resource, the water conservation we can obtain would dwarf the savings expected from those “shallow” conservation programs. This is “deep conservation” – the sort of thing that, as we progressively adopt it, can actually keep our water use flat for years to come, even as the population we need to serve grows.

That fundamental alteration of the form and function of our water resources infrastructure will be a generational change, happening one project at a time over many years.  But we are dealing here with infrastructure that has a very long service life, and the decisions we make today will be with us for decades to come, with the sunk cost in that 19th century model “condemning” us to continuing to bear those inefficiencies.  So we have to start making those changes now, in every project going forward, to get on that path to deep conservation.

These ideas, ideals, principles and concepts are the subject of this waterblogue – a blog that is a dialogue about water.  In particular, about moving society toward sustainable water.

Let the conversation begin.

 

Advertisements
Explore posts in the same categories: Uncategorized

4 Comments on “First ‘Logue in the Water”


  1. May I simply just say what a relief to uncover a person that
    really knows what they are talking about ober the internet.
    You certainly realize how to bring ann issue to light and make it important.
    A lot more people really need to look at this and undderstand this side of
    your story. I was surprised you’re not mkre popular since you
    definitely have the gift.

  2. Tim Rhode Says:

    Thank you for a very well written description of what the new paradigm should be. Yes, we need to move all our utility needs from large to small solutions. Water and Electricity can be generated at the level of individual buildings and homes to dispense with the waste of energy, water and financial resources that is required to supply these resources over large areas. Another part of the paradigm is how to recycle the waste products at the scale of individual buildings and houses. The so-called third world is full of possible solutions that are already being tried simply because they cannot afford to waste money on supplying these resources over large areas.

  3. Brad Says:

    I think this is the first blog I’ve even subscribed to… hope I did it correctly. Great stuff!

  4. Milan J. Michalec Says:

    This conversation about the realities of the way we manage all sources of water today is so necessary if we are considerate of the future and that of the quantity and quality of the water available to us tomorrow. I look forward to learning more as others join in.


What do you think about this?

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


%d bloggers like this: